A Worker's Backpack as Alternative to PAYG Pension Systems

Julián Díaz-Saavedra ¹ Ramon Marimon ² João Brogueira de Sousa ³

¹Universidad de Granada

²Universitat Pompeu Fabra and EUI

³Universidade Nova de Lisboa

JEEA March 2023

Evolution of Dependency Ratios

Figure: Evolution of the dependency ratios in selected countries (OECD).

Unfunded pension costs: Spain 2018 to 2068

Figure: Evolution of the dependency ratio and model implied payroll tax rate in Spain between 2018 and 2068.

Unsustainable European pension systems

- Most advanced economies face a demographic transition in the incoming decades.
 - ☐ Dependency ratios (+65/20-64) will more than double.
- This transition implies that many Social Security systems are unsustainable or highly distortive.
 - ☐ PAYG: transfer from (few) workers to (many) retirees.

Unsustainable European pension systems

- Most advanced economies face a demographic transition in the incoming decades.
 - ☐ Dependency ratios (+65/20-64) will more than double.
- This transition implies that many Social Security systems are unsustainable or highly distortive.
 - ☐ PAYG: transfer from (few) workers to (many) retirees.
- Some reforms (Spain 2010, 2013) improve sustainability at large welfare costs (low pensions) in the future (Díaz-Giménez and Díaz-Saavedra (2017)).

Unsustainable European pension systems

	Most advanced economies face a demographic transition in the incoming decades.
	☐ Dependency ratios (+65/20-64) will more than double.
-	This transition implies that many Social Security systems are unsustainable or highly distortive.
	☐ PAYG: transfer from (few) workers to (many) retirees.
	Some reforms (Spain 2010, 2013) improve sustainability at large welfare costs (low pensions) in the future (Díaz-Giménez and Díaz-Saavedra (2017)).
	We compare PAYG to alternative funded systems, and find that:
	$\ \square$ with aged population, funded systems dominate unfunded systems;
	 worker 'Backpack' best among funded systems, accounting for transition cost.

■ a fund own by the worker, transferable across jobs;

- a fund own by the worker, transferable across jobs;
- accumulates, while working, with a basic payroll tax;
- contributions are not subject to income tax;

- a fund own by the worker, transferable across jobs;
- accumulates, while working, with a basic payroll tax;
- contributions are not subject to income tax;
- earns a market interest rate (i.e. fully funded system);
- can only be used during unemployment or retirement;

- a fund own by the worker, transferable across jobs;
- accumulates, while working, with a basic payroll tax;
- contributions are not subject to income tax;
- earns a market interest rate (i.e. fully funded system);
- can only be used during unemployment or retirement;
- converts into (taxable) annuity payment at retirement;

- a fund own by the worker, transferable across jobs;
- accumulates, while working, with a basic payroll tax;
- contributions are not subject to income tax;
- earns a market interest rate (i.e. fully funded system);
- can only be used during unemployment or retirement;
- converts into (taxable) annuity payment at retirement;
- in the Austrian reform (2003):
 - a substitute to severance payments (a small BP) (Kettemann et al, 2017).
 - no link to retirement pensions.

- a fund own by the worker, transferable across jobs;
- accumulates, while working, with a basic payroll tax;
- contributions are not subject to income tax;
- earns a market interest rate (i.e. fully funded system);
- can only be used during unemployment or retirement;
- converts into (taxable) annuity payment at retirement;
- in the Austrian reform (2003):
 - a substitute to severance payments (a small BP) (Kettemann et al, 2017).
 - no link to retirement pensions.
- in our study (Spanish economy): a complement/substitute to UI/PAYG Pensions.

■ How does a BP economy compare with a PAYG economy in the long run?

- How does a BP economy compare with a PAYG economy in the long run?
 - ☐ How does it compare with other alternative pension systems: private savings or funded pension plans?

- How does a BP economy compare with a PAYG economy in the long run?
 - ☐ How does it compare with other alternative pension systems: private savings or funded pension plans?

■ How can the transition from PAYG to BP be implemented?

- How does a BP economy compare with a PAYG economy in the long run?
 - ☐ How does it compare with other alternative pension systems: private savings or funded pension plans?

- How can the transition from PAYG to BP be implemented?
 - ☐ Is it possible to design a transition without losers (Pareto transition)?

How does a BP economy compare with a PAYG economy in the longrun?
How does it compare with other alternative pension systems: private savings or funded pension plans?
How can the transition from PAYG to BP be implemented?
$f \square$ Is it possible to design a transition without losers (Pareto transition)?
Taking into account the demographic transition, how fast should it be implemented?

■ Develop a detailed overlapping generations model:

- Develop a detailed overlapping generations model:
 - household heterogeneity: age, income risk, labor market status, borrowing constraints;
 - ☐ optimize consumption, savings, labor supply/job search, retirement decision over the lifecycle; details

- Develop a detailed overlapping generations model:
 - household heterogeneity: age, income risk, labor market status, borrowing constraints;
- Solve steady-state equilibrium and calibrate it to Spain in 2018.

- Develop a detailed overlapping generations model:
 - household heterogeneity: age, income risk, labor market status, borrowing constraints;
- Solve steady-state equilibrium and calibrate it to Spain in 2018.

- Develop a detailed overlapping generations model:
 - household heterogeneity: age, income risk, labor market status, borrowing constraints;
- Solve steady-state equilibrium and calibrate it to Spain in 2018.
- Solve steady-state equilibrium, under the 2068 age distribution forecast:
 - 1 assuming PAYG pensions are in place;
 - 2 alternatively, PAYG pensions are replaced with BP system.
 - 3 compare BP to other funded systems.

- Develop a detailed overlapping generations model:
 - □ household heterogeneity: age, income risk, labor market status, borrowing constraints;
- Solve steady-state equilibrium and calibrate it to Spain in 2018.
- Solve steady-state equilibrium, under the 2068 age distribution forecast:
 - 1 assuming PAYG pensions are in place;
 - 2 alternatively, PAYG pensions are replaced with BP system.
 - **3** compare BP to other funded systems.
- Solve transition path between 2018 and 2068+, without default on PAYG promises.

Findings

- How does a BP economy compare with a PAYG economy in the long run?
 - Capitalized, more productive; higher employment, output, consumption.
 - Much lower total payroll tax.

Findings

- How does a BP economy compare with a PAYG economy in the long run?
 - Capitalized, more productive; higher employment, output, consumption.
 - Much lower total payroll tax.
- How does it compare with economies under other funded pension systems?
 - Similar in the aggregate, but BP delivers (U) insurance, higher welfare across different demographic groups.

Findings

	How does a BP economy compare with a PAYG economy in the long run?
	 Capitalized, more productive; higher employment, output, consumption.
	☐ Much lower total payroll tax.
-	How does it compare with economies under other funded pension systems?
	☐ Similar in the aggregate, but BP delivers (U) insurance, higher welfare across different demographic groups.
-	How can a Pareto improving transition from PAYG to BP be implemented? ☐ We study debt-financed transitions:
	1 Gradual phase out: large pension deficits due to demographic transition:

Introduction Model Results Conclusions

process, lower entitlement debt.

2 Fast reform: lower deficits during transition by anticipating the ageing

Calibrate the model with Spanish data (2018):

- Age and education distribution;
- Main aggregates, wealth and income distribution, labor market stocks and flows;

Calibrate the model with Spanish data (2018):

- Age and education distribution;
- Main aggregates, wealth and income distribution, labor market stocks and flows;
- Tax policy, unemployment benefits and retirement pension parameters.

Solve alternative transitions to long-run steady-states, with age-education evolution as forecasted for Spain (INE) until 2068, assuming:

- PAYG pension system stays in place;
- **2** PAYG replaced by 'optimal' Backpack system, with $\tau_B^* = 22\%$.

Calibrate the model with Spanish data (2018):

- Age and education distribution;
- Main aggregates, wealth and income distribution, labor market stocks and flows;
- Tax policy, unemployment benefits and retirement pension parameters.

Solve alternative transitions to long-run steady-states, with age-education evolution as forecasted for Spain (INE) until 2068, assuming:

- PAYG pension system stays in place;
- **2** PAYG replaced by 'optimal' Backpack system, with $\tau_B^* = 22\%$.
- In the following, no change in interest r and wage ω rates (open economy).
- Closed economy results in the paper.

Figure: Survival Probabilities and Age distribution in Spain in 2018 and the 2068 forecast. Source: Institution Maioional de Estadística, 2016:4068 series. Results Conclusions

Baseline: PAYG transition 2018 - 2068

Under PAYG pension system:

Figure: Evolution of the dependency ratio and payroll tax rate (τ_v) between 2018 and 2068.

Reform: from PAYG to BP economy

Starting from the 2018 economy:

I Find a long-run welfare maximizing BP contribution rate τ_b^* ;

Reform: from PAYG to BP economy

Starting from the 2018 economy:

- **I** Find a long-run welfare maximizing BP contribution rate τ_b^* ;
- Choose which cohort is the last in the PAYG system;

Assumptions:

- Workers either pay PAYG payroll tax, or BP tax τ_b^* ;
- PAYG system deficit financed with debt issuance, i = 1%.

Reform: from PAYG to BP economy

Starting from the 2018 economy:

- **1** Find a long-run welfare maximizing BP contribution rate τ_b^* ;
- Choose which cohort is the last in the PAYG system;
- **3** Which cohort is the first to enter the BP system τ_b^* .

Assumptions:

- Workers either pay PAYG payroll tax, or BP tax τ_b^* ;
- PAYG system deficit financed with debt issuance, i = 1%.

Different choices of 1-3 imply different debt levels after the reform.

A transition to a Backpack economy

I Slow: Cohorts t=2019,2020,... enter the BP system, all 2018 workers and retirees stay in PAYG:

A transition to a Backpack economy

- I Slow: Cohorts t=2019, 2020, ... enter the BP system, all 2018 workers and retirees stay in PAYG:
 - ☐ Large pension deficits (debt ~7x Y, assuming zero interest): all 2019 pension claims and payments unfunded by 2019+ cohorts;

- **1** Slow: Cohorts t = 2019, 2020, ... enter the BP system, all 2018 workers and retirees stay in PAYG:
 - □ Large pension deficits (debt ~7x Y, assuming zero interest): all 2019 pension claims and payments unfunded by 2019+ cohorts;
- **2** Fast: Cohorts t=2019,2020,... and all workers in 2019 move to BP system:

- **1** Slow: Cohorts t = 2019, 2020, ... enter the BP system, all 2018 workers and retirees stay in PAYG:
 - □ Large pension deficits (debt ~7x Y, assuming zero interest): all 2019 pension claims and payments unfunded by 2019+ cohorts;
- **2** Fast: Cohorts t=2019,2020,... and all workers in 2019 move to BP system:

- **1** Slow: Cohorts t = 2019, 2020, ... enter the BP system, all 2018 workers and retirees stay in PAYG:
 - ☐ Large pension deficits (debt ~7x Y, assuming zero interest): all 2019 pension claims and payments unfunded by 2019+ cohorts;
- **2** Fast: Cohorts t=2019,2020,... and all workers in 2019 move to BP system:
 - \Box Newcomers enter with b=0;

- I Slow: Cohorts t=2019,2020,... enter the BP system, all 2018 workers and retirees stay in PAYG:
 - ☐ Large pension deficits (debt ~7x Y, assuming zero interest): all 2019 pension claims and payments unfunded by 2019+ cohorts;
- **2** Fast: Cohorts t=2019,2020,... and all workers in 2019 move to BP system:
 - \Box Newcomers enter with b=0;
 - lacksquare 2019 workers receive $b \geq 0$ subsidy s.t. weakly prefer BP to status quo:

- 1 Slow: Cohorts t=2019,2020,... enter the BP system, all 2018 workers and retirees stay in PAYG:
 - ightharpoonup Large pension deficits (debt \sim 7x Y, assuming zero interest): all 2019 pension claims and payments unfunded by 2019+ cohorts;
- **2** Fast: Cohorts t=2019,2020,... and all workers in 2019 move to BP system;
 - \Box Newcomers enter with b=0;
 - lacksquare 2019 workers receive $b \geq 0$ subsidy s.t. weakly prefer BP to status quo;
 - ☐ Retirees in 2019 keep their pension payments.

- 1 Slow: Cohorts t=2019,2020,... enter the BP system, all 2018 workers and retirees stay in PAYG:
 - ☐ Large pension deficits (debt ~7x Y, assuming zero interest): all 2019 pension claims and payments unfunded by 2019+ cohorts;
- **2** Fast: Cohorts t = 2019, 2020, ... and all workers in 2019 move to BP system;
 - \Box Newcomers enter with b=0;
 - lacksquare 2019 workers receive $b \geq 0$ subsidy s.t. weakly prefer BP to status quo;
 - ☐ Retirees in 2019 keep their pension payments.
 - □ Lower debt to fund initial BP claims and current PAYG pensions (~3.5x Y, assuming zero interest).

- I Slow: Cohorts t=2019,2020,... enter the BP system, all 2018 workers and retirees stay in PAYG:
 - ☐ Large pension deficits (debt ~7x Y, assuming zero interest): all 2019 pension claims and payments unfunded by 2019+ cohorts;
- **2** Fast: Cohorts t=2019,2020,... and all workers in 2019 move to BP system;
 - \Box Newcomers enter with b=0;
 - $lue{}$ 2019 workers receive $b \geq 0$ subsidy s.t. weakly prefer BP to status quo:
 - ☐ Retirees in 2019 keep their pension payments.
 - □ Lower debt to fund initial BP claims and current PAYG pensions (~3.5x Y, assuming zero interest).
- Next slides: a Fast transition with i=1% interest on "entitlement" debt.

Introduction Model Results Conclusions

Fast transition from PAYG to BP economy

Fast transition from PAYG to BP economy

Table: Aggregates in the PAYG and BP economics in 2068.

	Y	L	A/Y	C/Y
PAYG	2.2	0.7	1.0	0.3
BP	2.5	0.7	5.5	0.4

h: average share of disposable time allocated to the market.

Table: Labor Market Shares in the PAYG and BP economies in 2068 (% of population).

	W	U	ı	R
PAYG	50.8	10.8	3.7	34.7
BP	58.9	13.3	5.0	22.8

W: workers, U: unemployed, I: inactive (s=0), R: retirees.

Table: Aggregates in the PAYG and BP economics in 2068.

	V	Τ	Λ/V	C/Y
	1	L	A/I	C/I
PAYG	2.2	0.7	1.0	0.3
BP	2.5	0.7	5.5	0.4

h: average share of disposable time allocated to the market.

Table: Labor Market Shares in the PAYG and BP economies in 2068 (% of population).

W	U	I	R
50.8	10.8	3.7	34.7
58.9	13.3	5.0	22.8
	50.8	50.8 10.8	50.8 10.8 3.7

W: workers, U: unemployed, I: inactive (s=0), R: retirees.

Table: Policy Parameters in the PAYG and in the BP economies.

	Tax Rates (%)						
	PAYG BP						
τ_c	25.7	23.7					
$ au_p$	51.1	2.8					
τ_B	-	22.0					

 τ_c : consumption tax rate, τ_p : payroll tax, τ_B : BP tax rate.

Table: Policy Parameters in the PAYG and in the BP economies.

	Tax Rates (%)						
	PAYG BP						
$\overline{\tau_c}$	25.7	23.7					
$ au_p$	51.1	2.8					
$ au_B$	-	22.0					

 τ_c : consumption tax rate, τ_p : payroll tax, τ_B : BP tax rate.

Table: Policy Parameters in the PAYG and in the BP economies.

	Tax Rates (%)						
	PAYG BP						
τ_c	25.7	23.7					
$ au_p$	51.1	2.8					
$ au_B$	-	22.0					

 τ_c : consumption tax rate, τ_p : payroll tax, τ_B : BP tax rate.

Table: Government Budget in the PAYG and BP economies in 2068 (% of output, Y).

	Gov. Expenditure			-	Tax Re	venue	5	
	T_r	U	P	rB	T_c	T_k	T_y	T_p
PAYG	0.8	1.2	21.0	0.0	8.8	2.3	6.8	22.2
BP	1.0	1.1	0.00	3.4	10.4	2.3		1.1

 T_r : gov. transfers, P: pension payments, U: UB expenditures, rB: interest payments; T_c : consumption taxes, T_k : capital income taxes, T_y : income taxes, T_p : payroll taxes . Introduction Results Conclusions

Table: Policy Parameters in the PAYG and in the BP economies.

	Tax Rates (%)						
	PAYG BP						
τ_c	25.7	23.7					
$ au_p$	51.1	2.8					
$ au_B$	-	22.0					

 τ_c : consumption tax rate, τ_p : payroll tax, τ_B : BP tax rate.

Table: Government Budget in the PAYG and BP economies in 2068 (% of output, Y).

	Gov. Expenditure			-	Tax Re	venue	S	
	T_r	U	P	rB	T_c	T_k	T_y	T_p
PAYG	0.8	1.2	21.0	0.0	8.8	2.3	6.8	22.2
BP	1.0	1.1	0.00	3.4	10.4	2.3	8.6	1.1

 T_r : gov. transfers, P: pension payments, U: UB expenditures, rB: interest payments; T_c : consumption taxes, T_k : capital income taxes, T_y : income taxes, T_p : payroll taxes . Introduction Results Conclusions

Welfare comparisons

Table: Consumption Equivalent Variation (% of lifetime consumption) in PS and BP economies, relative to the PAYG economy.

Pension system		Education					
	Dropouts	High School	College	All			
Private savings	22.3	26.7	24.7	26.5			
Pension fund	31.1	31.1	29.5	30.9			
Backpack	35.2	36.5	35.5	36.1			

Welfare comparisons

Table: Consumption Equivalent Variation (% of lifetime consumption) in PS and BP economies, relative to the PAYG economy.

Pension system		Education					
	Dropouts	High School	College	All			
Private savings	22.3	26.7	24.7	26.5			
Pension fund	31.1	31.1	29.5	30.9			
Backpack	35.2	36.5	35.5	36.1			

Table: Consumption Equivalent Variation (% of lifetime consumption) in the BP economy, relative to private savings economy.

Pension system		Education		
	Dropouts	High School	College	All
Backpack	7.1	7.7	8.7	7.6

Replacing the PAYG pension system with a worker Backpack in Spain capitalizes the economy, ease tax distortions, with important welfare gains.

- Replacing the PAYG pension system with a worker Backpack in Spain capitalizes the economy, ease tax distortions, with important welfare gains.
 - ☐ The demographic transition in Spain is an extreme case, but not an exception.

- Replacing the PAYG pension system with a worker Backpack in Spain capitalizes the economy, ease tax distortions, with important welfare gains.
 - ☐ The demographic transition in Spain is an extreme case, but not an exception.
 - ☐ Backpack system delivers higher welfare to all demographic groups considered, compared to other standard funded systems.
- A fast transition to a BP economy can be achieved without imposing high costs for households alive during the reform.

- Replacing the PAYG pension system with a worker Backpack in Spain capitalizes the economy, ease tax distortions, with important welfare gains.
 - ☐ The demographic transition in Spain is an extreme case, but not an exception.
 - ☐ Backpack system delivers higher welfare to all demographic groups considered, compared to other standard funded systems.
- A fast transition to a BP economy can be achieved without imposing high costs for households alive during the reform.
- Results hold in a closed economy: amplification due to increase in wage rate (decrease in r).

Thank you

Preferences:

$$\mathbb{E}\sum_{j=20}^{100} \beta^{j-20} \psi_j \Big[u(c,l) - \gamma(s) \Big], \tag{1}$$

Preferences:

$$\mathbb{E}\sum_{j=20}^{100} \beta^{j-20} \psi_j \Big[u(c,l) - \gamma(s) \Big], \tag{1}$$

- Labor market states before retirement:
 - □ Employed, with productivity $\epsilon_{h,j}z$, depending on education $h \in \{1,2,3\}$, age $j \in \{20,\dots,100\}$ and a stochastic Markov shock, z.
 - Job destruction with probability $\sigma_{\mathbf{j}}$.

■ Preferences:

$$\mathbb{E}\sum_{j=20}^{100} \beta^{j-20} \psi_j \Big[u(c,l) - \gamma(s) \Big], \tag{1}$$

- Labor market states before retirement:
 - □ **Employed**, with **productivity** $\epsilon_{h,j} \mathbf{z}$, depending on education $h \in \{1, 2, 3\}$, age $j \in \{20, ..., 100\}$ and a stochastic Markov shock,
 - $h \in \{1, 2, 3\}$, age $j \in \{20, \dots, 100\}$ and a stochastic Markov shock z.
 - Job destruction with probability $\sigma_{\mathbf{j}}$.
 - ☐ Unemployed, (if eligible) receive unemployment benefits.
 - Job search effort $s \in \{0, 1\}$.
 - Receive a **job offer** with probability $\lambda_{\mathbf{j}}(s)$.

■ Preferences:

$$\mathbb{E}\sum_{j=20}^{100} \beta^{j-20} \psi_j \Big[u(c,l) - \gamma(s) \Big], \tag{1}$$

- Labor market states before retirement:
 - \Box **Employed**, with **productivity** $\epsilon_{h,j}z$, depending on education
 - $h \in \{1,2,3\},$ age $j \in \{20,\dots,1\tilde{0}0\}$ and a stochastic Markov shock, z.
 - Job destruction with probability σ_i .
 - ☐ Unemployed, (if eligible) receive unemployment benefits.
 - Job search effort $s \in \{0, 1\}$.
 - Receive a **job offer** with probability $\lambda_{\mathbf{j}}(s)$.
 - \blacksquare s=0: Inactive.
 - ☐ Retired: next slide.

Retirement in the OLG economy

Workers decide when to retire from the labor force:

- PAYG economy:
 - \square minimum retirement age R_0 ,
 - $\ \square$ receive a **pension** $p=\phi \bar{y_h}$, where $\bar{y_h}$ average labour earnings of educational group h in their last N_b years of wages, ϕ is a replacement rate.
 - $lue{}$ Pensions financed with workers' payroll taxes: τ_p .

Retirement in the OLG economy

Workers decide when to retire from the labor force:

- PAYG economy:
 - \square minimum retirement age R_0 ,
 - \Box receive a **pension** $p=\phi y_{\bar{h}}$, where $y_{\bar{h}}$ average labour earnings of educational group h in their last N_b years of wages, ϕ is a replacement rate.
 - $lue{}$ Pensions financed with workers' payroll taxes: τ_p .
- BP economy:
 - no minimum retirement age,
 - \Box receive a **pension** p = p(b) which depends on backpack savings b accumulated until retirement:
 - lacksquare p(b): actuarially fair annuity value of b.
 - \Box Pensions funded with workers' individual contributions, at rate τ_B .

Retirement in the OLG economy

Workers decide when to retire from the labor force:

- PAYG economy:
 - \square minimum retirement age R_0 ,
 - \Box receive a **pension** $p=\phi y_{\bar{h}}$, where $y_{\bar{h}}$ average labour earnings of educational group h in their last N_b years of wages, ϕ is a replacement rate.
 - \Box Pensions financed with workers' payroll taxes: τ_p .
- BP economy:
 - no minimum retirement age,
 - \Box receive a **pension** p=p(b) which depends on backpack savings b accumulated until retirement:
 - \blacksquare p(b): actuarially fair annuity value of b.
 - \Box Pensions funded with workers' individual contributions, at rate τ_B .
- Irreversible, z = 0 after retirement.

■ Taxable income and backpack:

- Taxable income and backpack:
 - ☐ if Employed:

$$y_b = (1 - \tau_p - \tau_b)y + r(1 - \tau_k)a + t_r$$

 $b' = \tau_B y + (1 + r(1 - \tau_k))b$

- Taxable income and backpack:
 - ☐ if Employed:

$$y_b = (1 - \tau_p - \tau_b)y + r(1 - \tau_k)a + t_r$$

$$b' = \tau_B y + (1 + r(1 - \tau_k))b$$

☐ if Unemployed, after job quit:

$$y_b = r(1 - \tau_k)a + t_r; \quad b' = (1 + r(1 - \tau_k))b$$

- Taxable income and backpack:
 - ☐ if Employed:

$$y_b = (1 - \tau_p - \tau_b)y + r(1 - \tau_k)a + t_r$$

$$b' = \tau_B y + (1 + r(1 - \tau_k))b$$

☐ if Unemployed, after job quit:

$$y_b = r(1 - \tau_k)a + t_r;$$
 $b' = (1 + r(1 - \tau_k))b$

☐ if Unemployed, after layoff:

$$y_b = r(1 - \tau_k)a + t_r; \quad b' \le (1 + r(1 - \tau_k))b$$

- Taxable income and backpack:
 - ☐ if Employed:

$$y_b = (1 - \tau_p - \tau_b)y + r(1 - \tau_k)a + t_r$$

$$b' = \tau_B y + (1 + r(1 - \tau_k))b$$

☐ if Unemployed, after job quit:

$$y_b = r(1 - \tau_k)a + t_r;$$
 $b' = (1 + r(1 - \tau_k))b$

☐ if Unemployed, after layoff:

$$y_b = r(1 - \tau_k)a + t_r; \quad b' \le (1 + r(1 - \tau_k))b$$

 \Box If Retired, getting the pension p = p(b),

$$y_b = r(1 - \tau_k)a + t_r + p(b); \quad p(b) = \left[1 + \sum_{t=1}^{T-R} \frac{\prod_{i=0}^t \psi_{R+i}}{(1+r)^t}\right]^{-1}b$$

- Taxable income and backpack:
 - ☐ if Employed:

$$y_b = (1 - \tau_p - \tau_b)y + r(1 - \tau_k)a + t_r$$

$$b' = \tau_B y + (1 + r(1 - \tau_k))b$$

if Unemployed, after job quit:

$$y_b = r(1 - \tau_k)a + t_r;$$
 $b' = (1 + r(1 - \tau_k))b$

☐ if Unemployed, after layoff:

$$y_b = r(1 - \tau_k)a + t_r; \quad b' \leq (1 + r(1 - \tau_k))b$$

 \square If Retired, getting the pension p = p(b),

$$y_b = r(1 - \tau_k)a + t_r + p(b); \quad p(b) = \left[1 + \sum_{t=1}^{T-R} \frac{\prod_{i=0}^t \psi_{R+i}}{(1+r)^t}\right]^{-1}b$$

Budget constraint:

$$(1+\tau_c)c + a' \le (1-\tau_y)y_b + a + x + bx,$$

where bx = b if lost job, otherwise bx = 0.

■ Taxable income: y_b

- \blacksquare Taxable income: y_b
 - $\ \Box$ if Employed, making $y = \omega \epsilon_{h,j} z l$:

$$y_b = (1 - \tau_p)y + r(1 - \tau_k)a + t_r$$

- Taxable income: y_b
 - \Box if Employed, making $y = \omega \epsilon_{h,j} z l$:

$$y_b = (1 - \tau_p)y + r(1 - \tau_k)a + t_r$$

☐ if Unemployed:

$$y_b = r(1 - \tau_k)a + t_r$$

- Taxable income: y_b
 - \Box if Employed, making $y = \omega \epsilon_{h,j} z l$:

$$y_b = (1 - \tau_p)y + r(1 - \tau_k)a + t_r$$

☐ if Unemployed:

$$y_b = r(1 - \tau_k)a + t_r$$

 $\ \Box$ If Retired, with pension $p=\phi \bar{y}_h^{N_b}$:

$$y_b = r(1 - \tau_k)a + t_r + p$$

- Taxable income: y_b
 - \Box if Employed, making $y = \omega \epsilon_{h,i} z l$:

$$y_b = (1 - \tau_p)y + r(1 - \tau_k)a + t_r$$

☐ if Unemployed:

$$y_b = r(1 - \tau_k)a + t_r$$

 \Box If Retired, with pension $p = \phi \bar{y}_b^{N_b}$:

$$y_b = r(1 - \tau_k)a + t_r + p$$

Budget constraint:

$$(1+\tau_c)c + a' \le (1-\tau_y)y_b + a + x,$$

where $x = b_0 \bar{y}_h$ if eligible for UB, otherwise x = 0.

- Households decide:
 - ☐ Consumption and savings, labor supply, job search, retirement.

- Households decide:
 - ☐ Consumption and savings, labor supply, job search, retirement.
- Backpack economy: $\int ad\mu + \int bd\mu = K$;

- Households decide:
 - ☐ Consumption and savings, labor supply, job search, retirement.
- Backpack economy: $\int ad\mu + \int bd\mu = K$;
- The representative firm: maximizes output with a Cobb-Douglas technology.
- The government: collects taxes and balances the budget period by period.
 - \Box Social Security budget (PAYG): $P + U = T_p$.

- Households decide:
 - ☐ Consumption and savings, labor supply, job search, retirement.
- Backpack economy: $\int ad\mu + \int bd\mu = K$;
- The representative firm: maximizes output with a Cobb-Douglas technology.
- The government: collects taxes and balances the budget period by period.
 - \Box Social Security budget (PAYG): $P + U = T_p$.
- Steady-states:
 - □ we take the age and educational distributions in Spain 2018 and in the 2068 forecast and solve for the steady-state equilibrium.
- Transition between steady-states. ► Back