Empirical Validation

Social Interactions and Legislative Activity

Nathan Canen (University of Houston) Matthew O. Jackson (Stanford, CIFAR, Santa Fe) Francesco Trebbi (UC Berkeley, NBER, CEPR)

JEEA Teaching Materials

May 2, 2023

Motivation

- The functioning of deliberative bodies (e.g., Congress) relies on informal interactions among its members.
 - E.g., to pass and craft legislation.
- However, such environments are rife with strategic behavior:
 - Legislators choose how much/with whom to socialize.
 - Having key allies influences the benefits of such interactions (i.e., quality of a bill, likelihood of it passing).
 - The environment is rife with partisan (identity) based affiliation and preferences.
- Studying the effects of electoral competition, political polarization or counterfactual policies on congressional behavior should accommodate the above.

Empirical Validation

Final Remarks

This Paper

Proposes a novel theoretical model accommodating:

- Endogenous formation of connections (individuals' choices affect whom they work with).
- Strategic decisions on the resulting network (links affect benefits of legislative effort).
- Homophily (social interactions are biased along party lines).
- Results on the effects of electoral competition and (non-linear) effects of polarization on legislative behavior.
 - Closed-form theory, reduced-form and structural results.
 - Such predictions would not be borne out of non-network data.
 - Empirically validated assumptions. Model fit also suggests it outperforms alternatives.
- Solution Solution

Empirical Validation

Final Remarks

Model

- $N = \{1, 2, ..., n\}$ politicians, divided into k = 1, ..., K parties.
- Each politician chooses two types of effort, both affecting reelection/bill approval:
 - x_i: Legislative Effort (e.g., crafting legislation, floor speeches).
 - *s_i*: Social Effort (e.g., attending social events/networking)
- Each party P_{ℓ} has a level of partisanship/structural homophily, p_{ℓ} ,
 - Members of P_{ℓ} spend a fraction p_{ℓ} of their interactions exclusively at party ℓ events (e.g., party and caucus meetings...)
 - The remainder, $1 p_{\ell}$, are at events in which they mix with members of all parties. (e.g., committee or social events...)

Empirical Validation

Final Remarks

Socialization

The network $G = \{g_{i,j}\}_{i,j \in N}$ is given by $g_{ij}(\mathbf{s}) = s_i s_j m_{ij}(\mathbf{s})$, where: if $j \in P(i)$ then

$$m_{ij}(\mathbf{s}) = p(i) \frac{p(j)}{\sum_{k \in P(i), k \neq i} p(k) s_k} + (1 - p(i)) \frac{(1 - p(j))}{\sum_{k \neq i} (1 - p(k)) s_k},$$

and if $j \notin P(i)$ then

$$m_{ij}(\mathbf{s}) = (1 - p(i)) \frac{(1 - p(j))}{\sum_{k \neq i} (1 - p(k)) s_k}.$$

- Politicians meet own-party members in two ways: at their own events (same party) and at general events (both parties).
- Politicians are met with the relative frequency with which they are present at events.
- Consistent with qualitative evidence, (some) econometric models of network formation (e.g., Mele, 2017; Graham, 2020)

Preferences

• Following Cabrales et al., 2011, preferences for *i* are:

$$u_i(x_i, x_{-i}, s_i, s_{-i}) = \alpha_i x_i + \phi_i \sum_{j \neq i} x_i(g_{ij}(\mathbf{s})x_j) - \frac{c}{2} x_i^2 - \frac{1}{2} s_i^2.$$

- If *G* was exogenous and known, it is the problem of Ballester et al., 2006.
- We study Nash equilibria in the limit (simultaneous) game (large n).

The Electoral Motive for Preferences

• In the paper, rationalize these preferences electorally:

$$u_i(x_i, x_{-i}, s_i, s_{-i}) = Pr(reelected) - \frac{c}{2}x_i^2 - \frac{1}{2}s_i^2$$

• Reelection depends on baseline electoral competition $(V_{i,0})$, and passing a bill (increasing in x_i and leg. effort of those *i* is connected to)

The Electoral Motive for Preferences

• In the paper, rationalize these preferences electorally:

$$u_i(x_i, x_{-i}, s_i, s_{-i}) = Pr(reelected) - \frac{c}{2}x_i^2 - \frac{1}{2}s_i^2$$

- Reelection depends on baseline electoral competition $(V_{i,0})$, and passing a bill (increasing in x_i and leg. effort of those *i* is connected to)
- In this set-up, ϕ_i is:
 - *increasing* in the likelihood of passing a bill conditional on effort, parameterized by $\gamma_{P(i)}$,
 - increasing in the electoral returns to passing a bill, measured by $(1 e^{-\lambda \zeta_{P(i)}})$,
 - *increasing* in electoral competition in *i*'s district, parametrized by $\rho V_{i,0}$.

Theoretical Results

Proposition

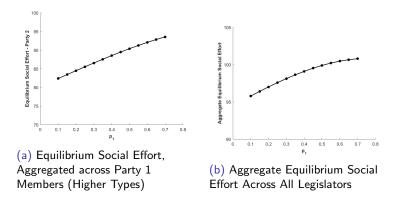
In any equilibrium of the game above:

- An increase in φ_i increases both equilibrium effort levels s^{*}_i and x^{*}_i.
- **2** An increase in i's type, α_i , increases both s_i^* and x_i^* .
- A decrease in the relative cost of legislative effort, c, increases both s^{*}_i and x^{*}_i.

Theoretical Results

Proposition

In any equilibrium of the game above:

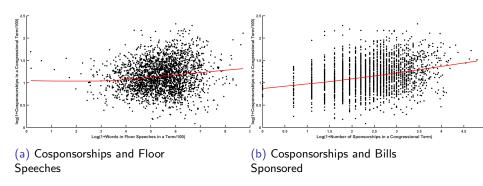

- An increase in φ_i increases both equilibrium effort levels s^{*}_i and x^{*}_i.
- **2** An increase in i's type, α_i , increases both s_i^* and x_i^* .
- A decrease in the relative cost of legislative effort, c, increases both s^{*}_i and x^{*}_i.

Corollary

Politicians who face greater electoral competition (lower $V_{i,0}$, all else held equal) have higher equilibrium effort levels (s_i^*, x_i^*) .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Figure: Numerical Example Where Increases in Partisanship Increases Social Effort


• Consistent with increasing cosponsorships and partisanship in Congress.

Empirical Validation

Validating Key Model Assumptions

Figure: Correlation between Raw Measures of Legislative Effort and Social Effort.

Empirical Evidence Consistent with the Corollary

	Outcome: Log(1+Cosponsorships in a Congressional Term/100)							
	(1)	(2)	(3)	(4)	(5)			
$V_{i,0}$ —Previous winning margin	-0.088***	-0.064***	-0.078***	-0.077***	-0.114***			
.,.	(0.022)	(0.022)	(0.021)	(0.023)	(0.031)			
Ideology controls	Yes	Yes	Yes	Yes	Yes			
Additional individual controls	No	Yes	Yes	Yes	No			
Congress fixed effects	No	No	Yes	Yes	No			
State fixed effects	No	No	No	Yes	No			
Ν	2,580	2,580	2,580	2,580	2,424			

TABLE 2. Evidence on lower (past) winning margins being positively correlated with social effort.

Notes: Robust standard errors are in parentheses. The outcome is the log of (1+the Number of Cosponsorships in a Congressional term/100). Ideology controls are the politician's DW-Nominate score and its DW-Nominate score squared. Additional individual controls include party fixed effects, tenure, and a Grosswart score to measure the value of Committee assignments (see the Data Section). The last column drops candidate-Congress observations whose previous election was uncontested (i.e. winning margins above 0.9), *** denotes p < 0.01.

◆□ → ◆□ → ◆ 三 → ◆ 三 → りへで 12/14

Model (Structural) Estimation

- However, many questions of interest depend on quantifying model parameters.
 - Returns to social effort (ϕ_i) .
 - Party types (*α_i*), etc.
- In the paper, we show how those parameters are:
 - Statistically identified, and
 - Consistently Estimated using equilibrium equations.

Introduction 00

Model 000000

Empirical Validation

(Some) Structural Results

Congress	105	106	107	108	109	110			
	Types, α_i								
Democrats:				l l					
Mean α_i	1.218	1.183	1.210	1.256	1.249	1.156			
Standard deviation of α_i	0.091	0.077	0.082	0.100	0.095	0.067			
Republicans:									
Mean α_i	1.292	1.345	1.343	1.416	1.360	1.230			
Standard deviation of α_i	0.078	0.076	0.074	0.103	0.081	0.103			
	Returns to social effort, φ_i								
Democrats:									
Mean φ_i	0.037	0.043	0.047	0.046	0.045	0.045			
Standard deviation of φ_i	0.001	0.002	0.0002	0.0001	0.0004	0.0003			
Republicans:									
Mean φ_i	0.031	0.033	0.034	0.033	0.034	0.037			
Standard deviation of φ_i	0.001	0.001	0.0001	0.0001	0.0003	0.0001			

TABLE 4. Heterogeneity: differences in the distributions of α_i and φ_i across parties.

Notes: We show the mean and the standard deviation of the (estimated) distributions of α_i and of φ_i for each party, highlighting the differences in those distributions. They are computed using the estimates from Table 3.

◆□ → ◆□ → ◆ 三 → ◆ 三 → りへで 14/14

Final Remarks

- Our model allows for: network formation, strategic actions, homophily, statistical identification and practical estimation.
- Its assumptions and theoretical predictions are consistent with the data.
- In the paper, we further show that this model:
 - with interior partisanship p_1, p_2 outperforms fully partisan alternatives.
 - fits legislative effort better than existing alternative networks (e.g., alumni, committee).
 - fits bill passage better than simple "regression" fits.

Final Remarks

- Our model allows for: network formation, strategic actions, homophily, statistical identification and practical estimation.
- Its assumptions and theoretical predictions are consistent with the data.
- In the paper, we further show that this model:
 - with interior partisanship p_1, p_2 outperforms fully partisan alternatives.
 - fits legislative effort better than existing alternative networks (e.g., alumni, committee).
 - fits bill passage better than simple "regression" fits.

Thank you!