Traumatic experiences adversely affect life cycle labor market outcomes of the next generation Evidence from WWII Nazi raids

Vincenzo Atella
Edoardo Di Porto
Joanna Kopinska
Maarten Lindeboom

- Between 50-85% experience a Potentially Traumatic Event (PTE)in lifetime
 - Being involved in a serious accident, losing a partner, being a victim of a crime or witnessing acts of severe violence or terror
- PTE pose a significant threat to physical and/or psychological well-being
- But may also extend to health and human capital of their offspring
- Large literature on long run effects in utero exposure to wars, famines, natural disasters
- We know that in utero exposure to traumatic event:
 - Affects birth outcomes, Childhood and adolescence Mental health, Cognition and education

Lederman et al (2004); Camacho (2008); Black et al, (2016); Quintana-Domeque & Rodenas – Serrano (2017); Gitau Fisk & Glover (2002); Cotter & Pariante (2002); Aizer (2016); Persson & Rossin-Slater (2018)

- This may plausibly affect entire labor market career of the next generation
- No knowledge of effect of traumatic and stressful experiences on entire labor career of the next generation
- This paper aims to fill this gap and examines whether:
 - 1) Traumatic events experienced by pregnant mother shape labor market outcomes of their offspring from start of the career until retirement
 - → Look at evolution of wage earnings over career
 - → Examine whether education, occupation and # unemployment spells can explain the earnings penalty
 - 2) The prenatally exposed suffer more from **job loss** later in life
 - → Use mass layoffs as a plausibly exogenous shock

Argue that maternal stress is likely to be the most important mechanism

- We use a specific historical setting:
 - Unexpected proclamation by Kingdom of Italy to seize hostilities against allied forces on September 8, 1943 (The Armistice)
 - German response was to occupy Italy and perform violent raids into municipalities to spread fear and terror and break potential resistance
 - Likely to cause great psychological trauma
- Design: exploit that Raids were intentionally idiosyncratic in time and space
- Unique Historical databases (raids and war casualties) linked to Administrative data (earnings, occupation, pensions & Soc Security) period 1974 – 2018
- Use generalized DiD to examine effects of raids on labor market outcomes and consequences job loss due to mass layoff (Issue of Dynamic complementarities)

Why is this important? Is the historical setting still relevant?

- Unfortunately, yes.....
 - Prevalence rate of PTE/psychological trauma high across the globe
 - Shocks concentrated among vulnerable (low SES) people
 - Those living in conflict areas or high crime neighborhood/environment
 - More vulnerable after bereavement and to other adverse shocks (cf COVID)
- Intergenerational persistence in poverty and low SES
 - Vulnerable more often exposed + stress coping phenotype altered
- Targeted health care and social policies at vulnerable groups can be effective in mitigating lifelong effects of a bad start

WWII in Italy: stylized facts

- Start WWII in Italy in 1940, but **crucial date was Armistice** on September 8, 1943
 - Italy seized hostilities against the Allied forces
 - Onset of German occupation of Italy
 - Frontline started in the South and gradually moved up North < next slide>
 - Post-Armistice period accounted for 70% of all civilian casualties
- The Armistice gave rise to the outbreak of violent Nazi raids
 - Aimed at both the resistance fighters and Civilians
 - Deliberately unexpected in time and space (at least initially, also check this)
 - Aim: terrorizing population and disrupting social dimension => Psychological trauma
 - Heterogeneous: murderers, torture, deportations, property destruction

Three main data sources

- Data on Nazi Raids (Violent episodes by Date, Municipality, Victim Type)
- II. Data on war casualties (# victims armed conflicts by Month and Province)
- III. Administrative match worker-firm data on demographics labor market and social security (INPS dataset)
- I & II Linked to III

In addition:

- **Health records from 900 GPs**, covering 1,8 million individuals
- Data can not be linked to (III), but can be linked to (I) and (II)
 - → Use it to validate interpretation of our findings: Is it psychological trauma/stress? ✓

INPS data

- Individual level, universe of Italian workers in the private sector 1974-2018
 - Demographics:
 - → Birth date; Municipality of birth; Age at death
 - Educational attainment for a random subsample
 - **Labor** information:
 - → Age of first employment; occupation & earnings (1974-2018); Age at retirement and pension benefits; Firm of employment, contract termination; collection of social security benefits (UI, DI)
 - Matched firm-worker information

Data selection

Males born in interval [-9,9] months surrounding 8 September 1943

- Municipalities < 200k
- INPS register 283,975 male births in our analyses period
- Exposure: Raid in municipality when in utero (Assuming 9 month gestation)
- 7,8% exposed in utero to Nazi raid (22,194 males, 1,603 raids)

Outcome variables (INPS data)

- Log annual earnings in 2005, CPI adjusted (ages 30 60)
- Education (for those still at work after 2010)
- Occupation (Blue collar vs White collar) (ages 30 60)
- **DI** benefit receipt; **UI** benefit receipt (ever & number up to age 60)
- Age at retirement; First pension benefit
- Mortality (between age 30 and 60)
- Job loss due to mass lay-off (1983-2004)
 - Mass Lay-off: Firms > 25 employees facing reduction of 30%, Sullivan & Von Wachter, (2009)

Figure 8: Research design and causal effects identification: a directed acyclic graph

Table III: Descriptive Difference-in-Differences statistics of the sample of INPS men born between Janua 1943 and May 1944

	Con	Control		Treated	
	Before	After	Before	After	(D-C)
	(A)	(B)	(<i>C</i>)	(D)	-(B-A)
earnings at 30	14579	15212	15183	15531	-285**
earnings at 40	19683	19917	20768	20622	-381**
earnings at 50	26049	26206	28721	27764	-1113***
earnings at 60	23865	24180	27689	26387	-1617***
blue collar at 30	0.8	0.8	0.73	0.77	0.04***
blue collar at 40	0.72	0.71	0.66	0.67	0.02***
blue collar at 50	0.69	0.69	0.63	0.64	0.01***
blue collar at 60	0.69	0.68	0.62	0.65	0.04***

Empirical model

Generalized difference-in-differences:

$$y_{imt}^a = \beta_0^a + \beta_1^a Nazi_{mt} + \beta_2^a War_{pt} + \alpha_m^a + \gamma_t^a + \delta_{tr}^a + \epsilon_{imt}^a$$

- Individual i, municipality m, born at time t, age a, province p, region r
- Y outcome variable at different ages
- Nazi, whether exposed in utero to Nazi raid
- War, general war effects (z-score, monthly #victims armed conflicts in province)
- Prime interest in β_1^a
 - → Measures effect of **additional stress** over and above general war effects, municipality fixed effects, month x year fixed effects, regional trends

Things to worry about

- Is the assignment of the treatment really random?
 - We condition on municipality fixed effects: conditionally random assignment √
 - Check for constancy of Municipality fixed effects
 - Also analyses on treated municipalities only (exploit randomness in exact timing)
- Is it stress? (see later slide for results)
 - Validate with medical database on medical expenditures (Neuro and Mental)
 - Data are primarily from rural areas (food situation was better)
- Is it (only) **prenatal**? (Yes, see later slide for results)
 - Chronic psychological trauma (PTSS)/ income effects => Examine 1st and 2nd year of life effects
- Parallel pre-trends, shorter gestation, flexible time trends, spillover effects, falsification

Effects on wage earnings

- Earnings effects already show up at the start of the labor market career and increase with age
 - → Do people sort into different jobs?

(Education important?)

- → Interrupted work careers?
- → Differential retirement behavior?

Is it sorting into different type of jobs?

Sorting into jobs can explain some of the earnings penalty

Table 6: The effect of in-utero exposure to a Nazi raid: Education attainment

	Presence in education sample	Less than secondary education	Tertiary education
Nazi raid	0.0013	0.0450**	-0.0357***
in utero	(0.0026)	(0.0188)	(0.0121)
WWII casualties (SD)	0.0005	0.0104	-0.0035
in utero	(0.0013)	(0.0076)	(0.0053)
R^2	0.0384	0.2359	0.2122
N	283,741	19,397	19,397
Time FEs	YES	YES	YES
Municipality FEs	YES	YES	YES
Reg trends	YES	YES	YES

Table VI: Other outcomes before age 60.

	Disability before 60	Dead before 60	Age at retirement	First pension (log)	No. Unemployed before 60
→ Nazi raid	0.0007	-0.0028	0.0595	-0.0209**	0.0309*
in utero	(0.0018)	(0.0028)	(0.0562)	(0.0093)	(0.0159)
WWII casualties (SD)	0.0033***	0.0006	0.0117	-0.0051	-0.0025
in utero	(0.0012)	(0.0009)	(0.0192)	(0.0034)	(0.0083)
R^2	0.0413	0.0627	0.1970	0.055	0.0535
N	283,720	283,720	227,987	227,987	283,720
Time FEs	YES	YES	YES	YES	YES
Municipality FEs	YES	YES	YES	YES	YES
Reg trends	YES	YES	YES	YES	YES

 Mediation analyses Adverhyu, Fenske & Nyshadham, JPE2019 shows that 42% of treatment effect can be explained by education

So, we find that **interruptions** in labor career are relevant for earnings penalty at later ages

- But maybe not just # unemployment spells, but larger earnings penalty after job loss of those exposed to in utero stress
 - Medical literature shows that in utero stress/psychological trauma affects stress coping phenotype
 - Besides direct medical effect indirect behavioral effect: social networks and/or effectiveness of job search strategies

Effects of a Job loss due to mass lay-off (DiDiD)

- Mass lay-off convenient (exogenous); use definition from literature
- Mass lay-off assignment independent from in utero Nazi raid exposure √

$$y_{imt}^a = \beta_0^a + \underline{\beta_1^a Nazi_{mt}} + \beta_2^a LO_{it}^a + \underline{\beta_3^a LO_{it}^a} * Nazi_{mt} + \beta_4^a War_{pt} + \alpha_m^a + \gamma_t^a + \delta_{tr}^a + \epsilon_{imt}^a,$$

		age 45	age 50	age 55	age 60
	Layoff	-0.3061***	-0.2648***	-0.3077***	-0.3293***
		(0.0105)	(0.0100)	(0.0129)	(0.0195)
	Nazi raid	-0.0245***	-0.0238***	-0.0208*	-0.0528***
	in utero	(0.0078)	(0.0082)	(0.0122)	(0.0197)
	Layoff × Nazi raid	- 0.0223	-0.0603**	-0.0881**	-0.0135
	in utero	(0.0351)	(0.0294)	(0.0415)	(0.0603)
	WWII casualties (SD)	-0.0062*	-0.0067*	-0.0105**	-0.0049
	in utero	(0.0034)	(0.0034)	(0.0049)	(0.0070)

- So, a bad start amplifies negative effects of later life employment shocks
- **Dynamic complementarities** in skills: investments made in later life are more productive when initial stock of skills is higher
- Conversely, a negative shock in life amplifies effects negative shocks later in life
- We have two orthogonal shocks as required, but...
- Still empirically difficult to test since parents make investments in their children
- Following Yi et al (2015), the total effect of a prenatal shock (e) on human capital at adult ages (θ) can be decomposed into

$$\underbrace{\frac{\mathrm{d}\theta}{\mathrm{d}e}}_{A} = \underbrace{\frac{\partial\theta}{\partial e}}_{B} + \underbrace{\frac{\partial\theta}{\partial I}}_{C} \times \underbrace{\frac{\partial I}{\partial e}}_{D}.$$

- So, when parents make compensating investments as a response to the shock
 CxD will be negative
 - This will lead our effect to underestimate the true effect of job loss
- When parents make reinforcing investments (only invest in the high endowed child) CxD will be positive
 - Effect of job loss overstates the true effect
- Finding that there are penalties => parents do not make fully compensating investments

More on the interpretation of the Nazi raid effect

(Is it psychological trauma/stress and is it prenatal?)

Is it stress?

Medical database: Drug expenditures for specific disease types at the patient level

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Neuro/	Cardio/	Respir.	Hormone	Neoplasms	Skin	Musculo/
	Mental.	Diabetic	syst.	syst.			skeletal
Nazi raid	14.68607**	8137636	. 2053017	.0604989	-6.213564	-1.089221	-1.453942
in utero	7.027016	3.318328	395272	.5167893	4.91778	.7845821	1.146788
WWII casualties (SD)	-2.4008	1176307	0043448	.8692845	-4.107407	2607241	8289242*
in utero	2.271634	1.307562	.0833904	.6241549	3.653428	.2934628	.4665404
Time FEs	YES	YES	YES	YES	YES	YES	YES
Municipality FEs	YES	YES	YES	YES	YES	YES	YES
Reg trends	YES	YES	YES	YES	YES	YES	YES
GP FEs	YES	YES	YES	YES	YES	YES	YES
AGE	YES	YES	YES	YES	YES	YES	YES
N	82,299	82,299	82,299	82,299	82,299	82,299	82,299

- Only neurological/mental health affected, no effect on other disease categories
- Food situation was not as bad as in other countries and mainly bad in big cities
 - Indeed, no effect on Cardio & Diabetes (associated with undernutrition)

Is it prenatal?

- Possible lasting effect of traumatic event on parental behavior, parenting skills, income
 - => Examine effects of exposure at later ages (cf common pre-trend)

	Earnings at 30	Earnings at 35	Earnings at 40	Earnings at 45	Earnings at 50	Earnings at 55	Earnings at 60
First and Second	year effects model [-	24,9] window					
Nazi raid	-0.0177**	-0.0337***	-0.0137**	-0.0206***	-0.0342***	-0.0225*	-0.0372*
in utero	(0.0084)	(0.0076)	(0.0067)	(0.0069)	(0.0081)	(0.0121)	(0.0190)
Nazi raid	0.0131	-0.0057	0.0038	0.0027	-0.0003	0.0038	0.0205
1st year	(0.0092)	(0.0067)	(0.0058)	(0.0063)	(0.0072)	(0.0112)	(0.0188)
Nazi raid	0.0229	0.0011	0.0043	0.0037	-0.0015	0.0013	0.0042
2nd year	(0.0177)	(0.0068)	(0.0060)	(0.0064)	(0.0073)	(0.0111)	(0.0183)

No effect of exposure in first and second year of life for all outcome measures

Some additional checks

Common trend

See also results 1st and 2nd year effect

Robust to:

- Flexible province trends/ Using only the fist 6 months/ changes in length of gestation/ change municipality cap
- No spillover effects to neighboring municipalities
- Conditional random assignment/Alternative identification strategy
 - Confirms occupation and layoff effects, earnings at later ages become smaller

Falsification test

Randomly assign Nazi raids to individuals (5000 pseudo treatments)

Selection issues

- Private sector workers are special?
 - No
- Fertility?
 - Focus on conceived before Armistice (born in interval [-9,9] around September 8, 1943)
- In utero selection?
 - No birth records at that time, but regional level data on cause specific mortality
 - => Pregnancy complications increase with WWII, but not with Nazi raids
- Follow up mortality
 - Examined cohort sizes at age 30 and probability of dying before age 60
- Selective regional mobility
 - Take treated municipalities and see if cohort sizes are different pre- and post treatment (also check on anticipation/non-randomness)

Conclusions

- We examine effect of in utero exposure to traumatic events and related stress on later labor outcomes of the offspring
- Unique design: randomly placed violent Raids across municipalities
- Unique administrative data on universe of private sector workers in Italy and link this to historical data bases
 - War casualties due to armed fights Germans and Allied forces
 - Detailed data about the timing and placing of Nazi raids
- We start where others have stopped
 - Effects on life-long earnings, occupation, pensions, retirement, mortality, DI and UI
 - Of particular relevance how the exposed cope with a job loss (due to mass lay-off)

- Prenatal exposure to traumatic and stressful event leaves a permanent scar that leads to worse labor market outcomes and ultimately pensions
- This is due to lower education, the type of job and interruptions in the working career due to unemployment
- Stress vulnerability may be an important mediator
- We find that a bad start amplifies negative effects of later life shocks.
- This suggests that dynamic complementarities in skills may be important
 - —Investments in later life are more productive if the initial stock of kills is higher (Cunha & Heckman (2007) and conversely bad start amplify negative effects of shocks later in life
 - Also shows that parents do not make fully compensating investments

- Back of the envelop calculations show:
 - —Per-person PDV of income losses (in 2005 euros) due to traumatic event is estimated at 14,219 euros = one year of earnings at age 30
 - —It leads to 13% increase in probability to buys drugs and 17% increase in medical expenditures for diseases of the nervous system and mental disorders
 - —Persson & Rossin-Slater find 13% increases of offspring of bereaved mothers
- Results of direct policy relevance and may guide policy makers in allocating resources

- Relates to situations where people are subject to violence related stress
 - —Cf Conflict areas, wars, but also living in high crime areas in developed world
- But also extends to stress associated COVID-19 crisis
 - —Health and well-being of loved ones, but also uncertainty and effects on job loss
- It is generally the low SES who suffer most => intergenerational persistence in low SES
- Interventions in childhood, or policies aimed at families living in adverse conditions could avert a bad start in the labor market
- Such policies could also moderate adversities of negative shocks during the course of the life cycle and reduce intergenerational persistence in low SES

Table II: Descriptive statistics for INPS men born between January 1943 and May 1944

	Mean	Std. Dev.	N. obs.
Nazi violence in utero	0.08	(0.27)	283,975
War victims in utero (# for 100k province pop.)	57.08	(69.38)	283,975
First year of earnings	1977	(6.61)	283,975
Last year of earnings	1994	(9.77)	283,975
Number of years with positive earnings	16	(9.89)	283,975
Earnings at 30	15014	(8123)	211,641
Earnings at 40	19999	(10240)	187,049
Earnings at 50	26582	(18626)	58,164
Earnings at 60	24712	(24785)	47,560
Blue collar at 30	0.79	(0.41)	211,641
Blue collar at 40	0.71	(0.46)	187,049
Blue collar at 50	0.68	(0.47)	158,164
Blue collar at 60	0.68	(0.47)	47,560
Ever disabled	0.11	(0.31)	283,975
Ever unemployed	0.22	(0.42)	283,975
Ever unemployed due to mass layoff	0.10	(0.27)	283,975
Retired	0.82	(0.39)	283,975
Retirement age	58	(5.39)	232,035
First monthly retirement pension	1173	(859)	232,035
Dead	0.24	(0.43)	283,975

Notes: The dark spots on the map indicate municipalities with a registered Nazi raid in the period September 1943 and May 1944.

Figure 2: Evolution of Nazi rides in the 9-/9+ around Armistice window

B.2 Layoffs assignment

Table B2: Layoff event random assignment robustness check.

	layoff at anytime	layoff at 45	layoff at 50	layoff at 55	layoff at 60
Nazi raid	-0.0013	0.0001	-0.0018	-0.0006	0.0017
in utero	(0.0027)	(0.0018)	(0.0024)	(0.0023)	(0.0026)
WWII casualties (SD)	0.0000	-0.0004	-0.0009	0.0001	0.0001
in utero	(0.0013)	(0.0009)	(0.0011)	(0.0009)	(0.0011)
R^2	0.0426	0.0454	0.0513	0.0528	0.0666
N	283,741	187,135	170,830	158,232	101,124
Time FEs	YES	YES	YES	YES	YES
Municipality FEs	YES	YES	YES	YES	YES
Reg trends	YES	YES	YES	YES	YES

Municipality selection

- since study potential exposure rather than actual victimization, we concentrate on municipalities with resident population < 200k (sensitivity test to the treshold)
- ▶ 75% of episodes counted less than 5 victims, only 8 episodes registered more than 50 victims
- 6 municipalities registered repeated episodes (Montenerodomo, Acquila, Ateleta, Chieri, Cesena e Ravenna) - disregard them
- ► The average duration was of 1.7 days, 90% of them lasted 1 day only, only 1% lasted more then 17 days -disregard them

Table C1: The assignment of Nazi raids to municipalities.

Nazi raid event (1943.09-1944.0			
Coefficient	Joint sign. (p-val)		
0.026***	0.1434		
(0.004)			
0.006	0.2930		
0.001	0.2394		
(0.001)			
-0.006	0.2801		
(0.003)			
-0.006	0.3928		
(0.015)			
-0.010	0.6498		
(0.008)			
-0.000	0.2823		
(0.000)			
-0.000	0.1558		
(0.003)			
0.001	0.4966		
(0.001)			
-0.005***	0.6234		
(0.002)			
8,091			
0.11			
	Coefficient 0.026*** (0.004) 0.006 (0.008) 0.001 (0.001) -0.006 (0.003) -0.006 (0.015) -0.010 (0.008) -0.000 (0.000) -0.000 (0.003) 0.001 (0.001) -0.005*** (0.002) 8,091		

Table C1: Effect of prenatal exposure to Nazi raids on health expenditure types.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Neuro/	Cardio/	Respir.	Hormone	Neoplasms	Skin	Musculo/
	Mental.	Diabetic	syst.	syst.			skeletal
Nazi raid	14.68607**	8137636	.2053017	.0604989	-6.213564	-1.089221	-1.453942
in utero	7.027016	3.318328	.395272	.5167893	4.91778	.7845821	1.146788
WWII casualties (SD)	-2.4008	1176307	0043448	.8692845	-4.107407	2607241	8289242*
in utero	2.271634	1.307562	.0833904	.6241549	3.653428	.2934628	.4665404
Time FEs	YES	YES	YES	YES	YES	YES	YES
Municipality FEs	YES	YES	YES	YES	YES	YES	YES
Reg trends	YES	YES	YES	YES	YES	YES	YES
GP FEs	YES	YES	YES	YES	YES	YES	YES
AGE	YES	YES	YES	YES	YES	YES	YES
N	82,299	82,299	82,299	82,299	82,299	82,299	82,299

Table C3: Effect of prenatal exposure to Nazi raids on probability of consuming various drug types.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Neuro/	Cardio/	Respir.	Hormone	Neoplasms	Skin	Musculo/
	Mental.	Diabetic	syst.	syst.			skeletal
Nazi raid	.0363725*	.009888	.0025408	0028159	0011372	0059475	031536
in utero	.0206139	.0165968	.0058697	.010909	.0042813	.00794	.0207016
WWII casualties (SD)	0069781	0038541	.0002067	0047323	0033508*	0028436	.0004971
in utero	.0062256	.0055323	.0015742	.0038085	.0018029	.0032363	.0079697
Time FEs	YES	YES	YES	YES	YES	YES	YES
Municipality FEs	YES	YES	YES	YES	YES	YES	YES
Reg trends	YES	YES	YES	YES	YES	YES	YES
GP FEs	YES	YES	YES	YES	YES	YES	YES
AGE	YES	YES	YES	YES	YES	YES	YES
N	82,299	82,299	82,299	82,299	82,299	82,299	82,299

 Table B16: Effect of Nazi raids on municipality level cohort size.

	cohort size	cohort size	cohort size	cohort size
	30-year-olds	40-year-olds	60-year-olds	70-year-olds
Nazi Raid	0.0053	0.0055	0.0027	-0.0041
	(0.0138)	(0.0138)	(0.0130)	(0.0119)
WWII casualties	0.0011**	0.0011	0.009*	0.0007
(SD)	(0.0005)	(0.0008)	(0.0006)	(0.0005)
R^2	0.2979	0.2980	0.2880	0.2707
N	135,150	135,150	135,150	135,150
Time FEs	YES	YES	YES	YES
Municipality FEs	YES	YES	YES	YES
Reg trends	YES	YES	YES	YES

Figure B5: Monthly cohort sizes observed at the age of 30.

