Debt crises, fast and slow

Giancarlo Corsetti
European University Institute and CEPR

Fred Seunghyun Maeng
University of Cambridge

JEEA teaching materials

Motivation

- Debt (public and private) is at a historical height
- Default (both ex post and prospective) is very costly
- Countries may be subject to disruptive belief-driven turmoils when debt levels are high, i.e., there may be multiple equilibria
- Slow-moving crises (hikes in costs of borrowing): European sovereign debt crises 2010-2012, Calvo (1988) Lorenzoni and Werning (2021)
- Rollover crises: Mexico debt crisis 1994, Cole and Kehoe (2000)
- The literature lacks a unified framework to bridge these two types of self-fulfilling debt crises
- No rollover crises in slow-moving crises setting
- No slow-moving crises in rollover crises setting

Questions

- Under what conditions sovereigns may face hikes in borrowing costs (slow-moving crises), as opposed to losing market access (rollover crises)?
- Does the threat of belief-driven crises motivate deleveraging over consumption smoothing?

This paper

- Build a unified framework that connects slow-moving crises and rollover crises
- Belief-driven debt crises are possible as debt grows-first in the form of hikes in borrowing costs driving a slow-moving accumulation of debt (at intermediate debt levels), then in the form of rollover crises (at high debt levels)
- Self-fulfilling rollover crises are also possible at low levels of debt
- The threat of self-fulfilling debt crises may/may not motivate debt deleveraging ("risk reduction policies"), depending on the type of crises faced by the country
- In economies that are vulnerable to both slow-moving and fast rollover debt crises (at intermediate and high levels of debt), welfare-maximizing policymakers generally find it optimal to run deficits and accumulate debt further
- In economies facing the risk of rollover crises only, deleveraging is generally preferred.

Selected Literature

- Gambling for Redemption and Self-Fulfilling Debt Crises, Conesa, J. C. and T. J. Kehoe (2017)
- Self-Fulfilling Debt Dilution: Maturity and Multiplicity in Debt Models Aguiar, M. and M. Amador (2020).
- The Mystery of the Printing Press: Monetary Policy and Self-Fulfilling Debt Crises, Corsetti, G. and L. Dedola (2016)
- Slow moving debt crises Lorenzoni, G. and I.Werning (2019)
- Sovereign Default: the Role of Expectations Ayres J, G Navarro, JP Nicolini, and P Teles (2018).
- Self-Fulfilling Debt Crises, Revisited, Aguiar M, S Chatterjee, H Cole, and Z Stangebye, (2022).

A Standard Framework

For exposition clarity, presented assuming all debt is short term

- Consumer (passive) - no capital, receives endowment, consume everything after paying tax to the government
- Benevolent government with budget identity

$$
q B^{\prime}=\underbrace{g+B-T}_{G F N}
$$

where the (endogenous) Gross Financing Need (GFN) of the government consists of (endogenous) spending g, outstanding debt B, minus taxes T

The GFN is financed by issuing new debt B^{\prime} at the price q.

- Risk neutral lenders—risk-neutral pricing for sovereign bonds (default risk)

Output risk

Snapshot, with initial state in recession

$$
A<1, p<1
$$

Framework

Timing

Lenders' problem

- Continuum $[0,1]$ of competitive, risk-neutral lenders with deep pockets and discount factor β, set prices

$$
\begin{equation*}
q(s)=z \beta \mathbb{E}\left[z^{\prime}\right] \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\text { bond price }= & \text { Default decision at the end of the period } \times \\
& \text { risk-free price } \times \text { probability of future repayment }
\end{aligned}
$$

- Discretionary governments "unable to commit" to repay at the end of the period \Rightarrow The term z belongs in the bond pricing
- Belief state ρ picks $q(s)$ among multiple bond prices that solve (1) \Rightarrow Given this price, government first chooses debt issuance B^{\prime}, and then takes the decision to default or to repay.

Beliefs regimes ρ

Baseline "Calvo beliefs"

- Optimistic: lenders always coordinate their expectations on the equilibrium with the best price that maximizes sovereign's welfare.
- Pessimistic: coordinate expectations on equilibria where the government bonds trade at the default-risky price.
Extension "Cole and Kehoe" (CK)
- CK beliefs: agents only willing to lend at the risk-free price, if the gov't can guarantee repayment also in the event of a "sudden stop". I.e., if an individual agent expects to be repaid even if no other agent in the economy is willing to finance the new issuance of debt.

Contrast: "time-invariant belief" equilibrium (all agents consider current beliefs constant over time) with standard sunspot assumption.

Benevolent Discretionary Government

- With a single decision maker, optimization problem is reduced to:

$$
V(s)=\max _{B^{\prime}, g, z} u(c, g)+\beta \mathbb{E}\left[V\left(s^{\prime}\right)\right]
$$

- We assume that linear income tax is levied by the government, with tax rate τ. Tax revenue is exogenous at $T(s)=\tau y(s)$. Consumer is passive $c=(1-\tau) y(s)$.
- Gov't chooses primary surplus $\leq \tau y(s)-\bar{g}$, where \bar{g} is the critical government expenditure; and whether to default.
- Default condition

$$
V_{\text {repay }}<V_{\text {default }}
$$

- This condition determines the debt thresholds $\bar{B}(a)_{\rho}$ below which gov't repays.

Debt tolerance thresholds

- Debt thresholds conditional on output and beliefs of lenders (opt and pes)
- in a recession $(A<1), \bar{B}(0)_{\text {opt }}>\bar{B}(0)_{\text {pes }}$

$$
\begin{aligned}
& \text { Optimistic: } \longmapsto q(s)=\beta \quad \begin{array}{c}
\text { Improve } \bar{B}(0) \\
\bar{B}(0)_{\text {opt }}
\end{array} \\
& \text { Pessimistic: } \longmapsto q(s)=\beta p \longmapsto \begin{array}{c}
\text { Decrease } \bar{B}(0) \\
\bar{B}(0)_{\text {pes }}
\end{array}
\end{aligned}
$$

- In the recovery state (the output recovers from $A \bar{y}$ to $\bar{y}), \bar{B}(1)$ does not depend on whether beliefs are opt or pes-as output stays at \bar{y} forever by assumption.

How revenue rises with debt issuance: optimistic beliefs

Debt thresholds $\bar{B}(0)_{\text {opt }}, \bar{B}(1)$ conditional on optimistic beliefs

How revenue rises with debt issuance: pessimistic beliefs

Debt thresholds $\bar{B}(0)_{\text {pes }}, \bar{B}(1)$ conditional on pessimistic beliefs

Crises: none, slow and fast

Debt sufficiently low: the bond price in equilibrium is risk-free

$$
q B^{\prime}=\underbrace{g+B-T}_{G F N: \text { vary with beliefs }}
$$

Crises: none, slow and fast

Intermediate debt: two equilibria for "opt" "pes" beliefs

$$
q B^{\prime}=\quad \underbrace{g+B-T}
$$

GFN: shifts upward with larger B

Crises: none, slow and fast

High enough debt: pessimistic beliefs cause loss of market access

Crises: none, slow and fast

Why isn't borrowing (at $H_{p e s}$) an equilibrium?

- At a relatively high stock of debt, when lenders turn pessimistic
\Rightarrow Market access possible only at the risky rate, provided $B^{\prime} \leq \bar{B}(1)$
\Rightarrow At the risky price, reducing GFN to keep $B^{\prime} \leq \bar{B}(1)$ is suboptimal: even with new financing, the government would prefer to default at the end of the period
\Rightarrow Anticipating this, lenders refuse to lend
- Contrast with the canonical rollover crisis in Cole and Kehoe (2000).
- This paper: lenders consider offering the default-risky prices at auction \Rightarrow at this low debt price, the gov't opts to default after the auction \Rightarrow lenders refuse to buy bonds
- Cole and Kehoe (2000): lenders coordinate on zero price \Rightarrow the surplus adjustment required to avoid default too large and harsh already at relatively low levels of debt \Rightarrow the gov't defaults conditional on losing market access \Rightarrow lenders refuse to buy bonds

Full model calibration

$$
u(c, g)=\log (c)+\gamma \log (g-\bar{g})
$$

\bar{y}	Output	100
β	Discount factor	0.98
Z	Cost of defaulting	0.95
γ	Relative weight of c and g in the utility function	0.20
τ	Government revenue as a share of output	0.36
\bar{g}	The critical level of expenditure	25
δ	Ammortization rate of government debt	0.2
A	Fraction of output during recession	0.9
p	Probability of leaving the recession	0.2
	Same as in Conesa and Kehoe (2017)	

Long-term debt (5-year), time-invariant beliefs
Policy function for $\bar{y}=100, A \bar{y}=90, p=0.2,1-Z=5 \%$

Policy function

- No crisis $\left[0, B_{N}\right]$, slow-moving crisis $\left(B_{N}, \bar{B}(0)_{\text {pes }}\right]$, fast crisis $\left(\bar{B}(0)_{\text {pes }}, \bar{B}(0)_{o p t}\right]$ Robustness

Long-term debt (5-year), sunspot $\rho \in\{$ opt, pes $\}$

Beliefs-switch probability $\pi=4 \%, 5$-year bonds, $\bar{y}=100, A \bar{y}=90, p=0.2,1-Z=5 \%$

- Deleveraging optimal only when debt is close to B_{N}, at which the government can eliminate self-fulfilling crises altogether (with a 'cliff effect' on welfare)
- When B is far above B_{N}, welfare-maximizing governments run deficits in a recession. The benefits from deleveraging would be lower borrowing costs ('price effect'), but these are more than offset by the costs of raising surpluses

Welfare effects of deleveraging

- 'Cliff effect': gains in expected utility from eliminating sunspot crises altogether by bringing B below B_{N}.
- 'Price effect': gains from lowering borrowing costs by bringing B below $\bar{B}(0)_{\text {pes }}$ (gains are larger, the shorter debt maturity)

Figure: $\delta=0.2, A=0.9, p=0.2$ with sunspot

Sunspot with CK beliefs ($\rho \in\{o p t, C K\}$)

Beliefs-switch probability $\pi=4 \%, 5$-year bonds, $\bar{y}=100, A \bar{y}=90, p=0.2,1-Z=5 \%$

- Deleveraging is generally preferred when $\rho \in\{o p t, C K\}$

Comparing baseline with CK beliefs

Sunspot with $\rho \in\{$ opt, pes $\}$ and $\rho \in\{$ opt, CK $\}$

Model $(\pi=4 \%)$	Proportion of deleveraging (\%)
Baseline, $\rho \in\{$ opt, pes $\}$	$\mathbf{9 . 3 8}$
Cole and Kehoe, $\rho \in\{$ opt, $C K\}$	$\mathbf{8 3 . 6 6}$

Table: Debt dynamics

- Proportion of deleveraging (\%): the range of debt in the crisis region over which the government finds it optimal to deleverage (expressed in percentage of the total width of the crisis region)
- When a country is at the risk of self-fulfilling debt crises, the government chooses to deleverage for much wider region when $\rho \in\{o p t, C K\}$, in comparison to $\rho \in\{o p t, p e s\}$.

Conclusion

- Multiplicity pervasive in debt default models featuring discretionary policymakers.
- Belief-driven slow-moving crises at intermediate levels of debt, and fast debt crises at high levels
- At high levels of debt, the bond price may suddenly deteriorate from the risk-free price to zero, due to a belief-switch to pessimism
- The threat of self-fulfilling crises under pessimistic beliefs is not enough to motivate deleveraging (risk reduction policies)
- Forward-looking benevolent governments generally prefer to run deficits in a recession.

Comparing baseline with CK beliefs

Full table

Model	The maximum debt to GDP ratio immune to debt crises (\%)	$\bar{B}(0)_{\pi} /(A \bar{y})$ $(\%)$	Proportion deleveraging $(\%)$
	of		

Table: Relevant thresholds and debt dynamics

- Debt crises may occur at much lower levels of debt when $\rho \in\{o p t, C K\}$
- The maximum sustainable debt level is also much lower when $\rho \in\{o p t, C K\}$

Resilience to self-fulfilling debt crises

- $\bar{B}(0)_{\text {opt }}$ barely affected by the maturity of debt (δ) and the probability of recovery (p), since the government is able to borrow at the risk-free rate when lenders are optimistic.
- $\bar{B}(0)_{\text {pes }}$ rises with longer debt maturity (lower δ), and a higher probability of recovery p-as both raise the net bond revenue in a pessimistic world, $\beta p\left(B^{\prime}-(1-\delta) B\right)-\kappa B$. Back

