Strategic Fertility, Education Choices, and Conflicts in Deeply Divided Societies

Émeline Bezin ${ }^{1} \quad$ Bastien Chabé-Ferret ${ }^{2} \quad$ David de la Croix ${ }^{3}$

March 1, 2024

[^0]
Fertility / Education trade-off

Demographic transition and rise in education: key elements of economic take-off
(1) Individual incentives:

- Opportunity cost (Becker and Lewis 1973, de la Croix and Doepke 2003 etc.)
- Returns to education (Galor and Weil 2000)
- Cost of contraception (Bhattacharya and Chakraborty 2017)
- Changing gender-specific opportunities (Voigtlaender and Voth 2013)
(2) Cultural diffusion of low fertility norms (Spolaore \& Wacziarg 2014, Daudin, Franck \& Rapoport 2018)

Norms, conflict and strategic behaviour

(1) Group-based norms of behaviour \Longrightarrow scope for strategic interactions
(2) Weak property rights \Longrightarrow resource appropriation game, in a society divided along ethnic or religious lines

- Strategic fertility
- "People as Power" (Yuval-Davis 1996)
- Population race backfires (de la Croix \& Dottori 2008) with a Beckerian Q-Q tradeoff (Doepke, 2015)
- Strategic education?

Research questions

(1) What happens when education becomes a strategic decision in a resource appropriation game?
(2) Do we find empirical support for these predictions in societies with weak property rights and ethnic/religious fragmentation?

What we do

(1) Build a model featuring a trade-off between production and appropriation

- Output increases with human capital with decreasing returns
- Appropriation decided through a contest where power depends on the relative size and human capital of groups
(2) Establish a theoretical link between group size and investment in fertility / education
(3) Investigate this link empirically in the context of Indonesia + external validity

Preferences and budget constraints

Continuum of identical agents divided in 2 groups, a and b, of respective size N^{a} and N^{b}

Indiv. j in group i $U_{t}^{i j}=c_{t}^{i j}+\beta d_{t+1}^{i j}-\frac{\lambda}{2}\left(n_{t}^{i j}\right)^{2}$
Adult b.c.: $\quad c_{t}^{i j}=1-\tau y_{t}^{i}-\gamma n_{t}^{i j} e_{t}^{i j}$

Elderdely b.c.: $\quad d_{t+1}^{i j}=\tau n_{t}^{i j} y_{t+1}^{i}$.

Technology

h.c. formation: $\quad h_{t+1}^{i j}=\left(e_{t}^{i j}\right)^{\rho}, \quad \rho \in[0,1]$

$$
\text { h.c. agg: } \quad H_{t+1}=h_{t+1}^{a} N_{t+1}^{a}+h_{t+1}^{b} N_{t+1}^{b} .
$$

Pop. growth: $N_{t+1}^{i}=n_{t}^{i} N_{t}^{i}$

$$
\text { Output } \quad Y_{t+1}=\left(H_{t+1}\right)^{(1-\alpha)}, \quad \alpha \in[0,1] .
$$

Indiv. income $\quad y_{t+1}^{i}=(1-\alpha) H_{t+1}^{-\alpha} h_{t+1}^{i}+\Pi_{t+1}^{i} \frac{\alpha Y_{t+1}}{N_{t+1}^{i}}$

Contest function

"Winner-takes-all contest" à la Garfinkel and Skaperdas 2007b revisited

$$
\Pi^{a}=\left\{\begin{array}{l}
\frac{\left(h^{a}\right)^{\mu} N^{a}}{\left(h^{a}\right)^{\mu} N^{a}+\left(h^{b}\right)^{\mu} N^{b}}, \text { if } h_{t}^{i} \neq 0 \text { and } N_{t}^{i} \neq 0 \forall i \in\{a, b\}, \\
\frac{N^{a}}{N^{a}+N^{b}}, \quad \text { if } h^{i}=0 \text { and } N^{i} \neq 0 \quad \forall i \in\{a, b\}, \\
\frac{\left(h^{a}\right)^{\mu}}{\left(h^{a}\right)^{\mu}+\left(h^{b}\right)^{\mu}}, \quad \text { if } h^{i} \neq 0 \text { and } N^{i}=0 \quad \forall i \in\{a, b\}, \tag{9}\\
\frac{1}{2}, \quad \text { if } h^{i}=0 \text { and } N^{i}=0 \quad \forall i \in\{a, b\},
\end{array}\right.
$$

Equilibrium without norms

Proposition 1

When norms on fertility and education are absent, at the Nash equilibrium, fertility and education choices are not affected by a change in group size.

Intuition: individual agents do not internalise the effect of their fertility and education choices on aggregate human capital.

Equilibrium with norms

- Key element: elasticity of power to human capital μ

Figure 1: Propositions 2 (left panel) and 3 (right panel)

Intuition

Change in group size has three distinct effects on fertility and education:
(1) Direct group size effect: $-\mathrm{b} / \mathrm{c}$ marginal return of approp.
(2) Indirect strategic effect: + or $-\mathrm{b} / \mathrm{c}$ fert \& educ can be either subs or comp in contest function
(3) Indirect substitution effect: Beckerian effect pushing for subs between fert \& educ

- (1) outweighs (2), so negative overall
- (3) outweighs (1) and (2) only for high enough values of μ

Endogenous norm formation

- Intermediate value of coordination cost \Longrightarrow asymmetric equilibrium
- Only small groups coordinate to strategically increase both fertility and education
- Relaxes assumption on μ, which just needs to be not too low

Context: Indonesia

Source : Data Sensus Penduduk 2010 Badan Pusat Statistik
Figure 2: Religious Affiliations in the Indonesian 2010 Census

Religious divisions and politics in Indonesia

Source : Data Sensus Penduduk 2010 Badan Pusat Statistik
(1) Fragmented along religious lines (Chen 2006, 2010, Gaduh 2012, Bazzi et al. 2018a)
(2) Widespread corruption: Korupsi, Kolusi, Nepotism (Pisani 2014)
(3) Education seen as a means to access administrative or elected positions, that come with rents (pension, bribes etc.)

Data and summary stats

Variable	Mean	(Std. Dev.)
Fertility sample		
Children ever born	3.92	(2.64)
Children surviving	3.42	(2.17)
Currently married (\%)	77.57	(41.71)
Age	50.79	(4.22)
Urban status (\%)	41.78	(49.32)
Years of schooling	4.77	(4.22)
Average years of schooling in regency	7.41	(2.04)
Child mortality in regency (\%)	5.51	(4.48)
Residing in province of birth (\%)	88.36	(32.08)
Number of observations		$3,187,482$
\quad Education sample		
Years of schooling	8.25	(4.11)
Age	28.96	(1.94)
Urban status (\%)	47.12	(49.92)
Average years of schooling in regency	7.5	(2.06)
Residing in province of birth (\%)	85.09	(35.62)
Number of observations		$6,211,129$
Source: Census data from 1971, 1980, 1990, 2000	2010 downloaded from IPUMS International	

Estimating equation - fertility

$E\left(y_{i}\right)=f\left(\beta_{0}+\sum_{k=1}^{11} \beta_{1, k} 1\left(G_{i}=\right.\right.$				
Variable	(1)	(2)	(3)	(4)
type of model	Poisson Children every born Surviving children			
Outcome				
Year of birth f.e.	\times	\times		\times
Census year * urban status	\times	\times	x	\times
Average years of schooling in regency		\times	\times	\times
Child mortality in regency		\times	\times	\times
Own years of schooling			x	x
Marital status			x	x
Religion			x	\times
Sample excluding migrants				x

Estimating equation - education

$$
E\left(y_{i}\right)=f\left(\beta_{0}+\sum_{k=1}^{11} \beta_{1, k} 1\left(G_{i}=k\right)+\beta_{2} X_{r}+\beta_{3} z_{i}\right)
$$

Variable	(1)	(2)	(3)	(4)	
Fertility equation	OLS				
type of model	Years of schooling				
Outcome	\times	\times	\times	\times	
Year of birth f.e.	\times	\times	\times	\times	
Census year * urban status		\times	\times	\times	
Child mortality in regency			\times	\times	
Sex			\times	\times	
Religion			\times		
Sample excluding migrants					

Empirical results - Indonesia

Fertility

Education

Source: Indonesian Census, waves 1971-2010

- Very small minorities limit fertility to invest massively in education: Usual Q-Q trade-off
- Medium-sized groups invest more than majority groups in both education and fertility: Reverse Q-Q trade-off

Empirical results - External validity

Source: Indonesian Census, waves 1971-2010, Malaysian Census, waves 19702000, Chinese Census, waves 1982-2000, Thai Census, waves 1990-2000

Contribution

(1) Family macro and development:

- Introduce nuances to the usual quality-quantity trade-offs
- Link institutional failure to demographics
(2) Economics of conflict: introduce fertility and education as choice variables in the appropriation process
(3) Economics of cultural norms: provide a narrative for norm formation as the result of strategic interactions between groups

Group size

Source: Indonesian Census, waves 1971-2010
Figure 3: Distribution of size of religious group by religion and deciles

Children ever born

Surviving children

Education

Roadmap

(1) Set up of the problem
(2) Equilibrium without norms
(3) Equilibrium when $\mu=1$
(9) Equilibrium when $\mu>1$
(3) Endogenous coordination

Group a's payoff function

$$
\begin{equation*}
\max _{\left(n_{t}^{a j}, e_{t}^{a j}\right) \in \mathcal{X}} W_{t}\left(n_{t}^{a j}, n_{t}^{a}, n_{t}^{b}, e_{t}^{a}, e_{t}^{a}, e_{t}^{b}, x_{t}^{a}\right) . \tag{10}
\end{equation*}
$$

$$
\begin{align*}
& \quad W_{t}\left(n_{t}^{a j}, n_{t}^{a}, n_{t}^{b}, e_{t}^{a j}, e_{t}^{a}, e_{t}^{b}, x_{t}^{a}\right)= \\
& \beta \tau n_{t}^{a j}\left((1-\alpha) H_{t+1}^{-\alpha}\left(e_{t}^{a j}\right)^{\rho}+\Pi_{t+1}^{a} \frac{\alpha Y_{t+1}}{N_{t+1}^{a}}\right)-\gamma n_{t}^{a j} e_{t}^{a j}-\frac{\lambda}{2}\left(n_{t}^{a j}\right)^{2} \tag{11}
\end{align*}
$$

Problem with norms - social planner

$$
V_{t}\left(n_{t}^{a}, n_{t}^{b}, e_{t}^{a}, e_{t}^{b}, x_{t}^{a}\right)=W_{t}\left(n_{t}^{a j}, n_{t}^{a}, n_{t}^{b}, e_{t}^{a j}, e_{t}^{a}, e_{t}^{b}, x_{t}^{a}\right),
$$

where

$$
n_{t}^{a j}=n_{t}^{a} \quad \forall j \in\left[0, N_{t}^{a}\right], \quad e_{t}^{a j}=e_{t}^{a} \quad \forall j \in\left[0, N_{t}^{a}\right] .
$$

Definition (Nash equilibrium of period t)

For all $x_{t} \in[0,1]$, a pure-strategy Nash equilibrium of period t is a strategy profile $\left(n_{t}^{a \star}, n_{t}^{b \star}, e_{t}^{a \star}, e_{t}^{b \star}\right)=\left(n^{a}\left(x_{t}\right), n^{b}\left(x_{t}\right), e^{a}\left(x_{t}\right), e^{b}\left(x_{t}\right)\right)$ with $n^{i}:[0,1] \rightarrow[0, \bar{n}]$ and $e^{i}:[0,1] \rightarrow[0, \bar{e}]$ such that for all $i \in\{a, b\}$,
$V_{t}\left(n_{t}^{i \star}, n_{t}^{-i \star}, e_{t}^{i \star}, e_{t}^{-i \star}, x_{t}^{i}\right) \geq V_{t}\left(n_{t}^{i}, n_{t}^{-i \star}, e_{t}^{i}, e_{t}^{-i \star}, x_{t}^{i}\right) \quad \forall\left(n_{t}^{i}, e_{t}^{i}\right) \in \mathcal{X}$.

Case with $\mu=1$

Proposition 2: Reverse quality-quantity trade-off

For $\mu=1$, both the fertility and education of group i are decreasing with the share of group i in the population at the Nash equilibrium.

Case with $\mu>1$

Proposition 3
There exist $\mu^{*}>1$ and $\tilde{\mu}>1$ such that for any $\mu \in\left(\mu^{*}, \tilde{\mu}\right)$,

$$
e^{a 0}>e^{a 1 / 2}>e^{a 1} \text { and } n^{a 1 / 2}>n^{a 1}>n^{a 0}
$$

Endogenous coordination

Definition (Stackelberg-Nash equilibrium of period t)

A Stackelberg-Nash equilibrium of period t is a strategy profile

$$
\begin{gathered}
\left(d_{t}^{a \star}, d_{t}^{b \star}, n_{t}^{a \star}, n_{t}^{b \star}, e_{t}^{a \star}, e_{t}^{b \star}\right)= \\
\left(d^{a}\left(x_{t}\right), d^{b}\left(x_{t}\right), n^{a}\left(x_{t}\right), n^{b}\left(x_{t}\right), e^{a}\left(x_{t}\right), e^{b}\left(x_{t}\right)\right)
\end{gathered}
$$

with $d^{i \star} \in \operatorname{argmax} V\left(n^{i \star}, n^{-i \star}, e^{i \star}, e^{-i \star}, x^{i}\right)-\kappa d^{i}$

$$
d^{i} \in\{0,1\}
$$

such that $\left(n^{i \star}, e^{i \star}\right) \in \operatorname{argmax} W\left(n^{j i}, n^{i \star}, n^{-i \star}, e^{j i}, e^{i \star}, e^{-i \star}, x^{i}\right)$ $\left(n^{i j}, e^{i i}\right) \in \mathcal{X}$
$\forall j \in\left[0, N x^{i}\right], \quad \forall x^{i} \in[0,1] \quad$ if $d^{i}=0$,
$\left(n^{i \star}, e^{i \star}\right) \in \operatorname{argmax} V\left(n^{i}, n^{-i \star}, e^{i}, e^{-i \star}, x^{i}\right)$
$\left(n^{i}, e^{i}\right) \in \mathcal{X}$
$\forall x^{i} \in[0,1] \quad$ if $d^{i}=1$.

Equilibrium with endogenous coordination

Proposition 5

Suppose that $x_{t}^{a}=0$. There exist $\tilde{\kappa}_{1}, \tilde{\kappa}_{2}, \tilde{\kappa}_{3}$ such that if $\tilde{\kappa}_{2}<\min \left\{\tilde{\kappa}_{1}, \tilde{\kappa}_{3}\right\}, \tilde{\kappa}_{1} \neq \tilde{\kappa}_{3}$, there exists a unique Stackelberg-Nash equilibrium given by

$$
\left(d_{t}^{a \star}, d_{t}^{b \star}, n_{t}^{a \star}, n_{t}^{b \star}, e_{t}^{a \star}, e_{t}^{b \star}\right)=
$$

$$
\left(1,1, \hat{n}^{a}(1,1), \hat{n}^{b}(1,1), \hat{e}^{a}(1,1), \hat{e}^{b}(1,1)\right) \forall \kappa<\tilde{\kappa}_{2}
$$

$$
\left(d_{t}^{a \star}, d_{t}^{b \star}, n_{t}^{a \star}, n_{t}^{b \star}, e_{t}^{a \star}, e_{t}^{b \star}\right)=
$$

$$
\left(1,0, \hat{n}^{a}(1,0), \hat{n}^{b}(0,1), \hat{e}^{a}(1,0), \hat{e}^{b}(0,1)\right) \forall \kappa \in\left(\tilde{\kappa}_{2}, \tilde{\kappa}_{3}\right),
$$

$$
\left(d_{t}^{a \star}, d_{t}^{b \star}, n_{t}^{a \star}, n_{t}^{b \star}, e_{t}^{a \star}, e_{t}^{b \star}\right)=
$$

$$
\left(0,0, \hat{n}^{a}(0,0), \hat{n}^{b}(0,0), \hat{e}^{a}(0,0), \hat{e}^{b}(0,0)\right) \forall \kappa>\max \left\{\tilde{\kappa}_{1}, \tilde{\kappa}_{3}\right\}
$$

Equilibrium with endogenous coordination

A Asymmetric equilibrium occurs for intermediate values of κ

- Low $\kappa \rightarrow$ back to case with exogenous coordination
- High $\kappa \rightarrow$ back to case without coordination

B1 Free-riding of the small group: always makes small group win from coordination
B2 Changes in aggregate outcomes: ambiguous effect of large group coordination

- higher output vs higher appropriation effort
\rightarrow Latter effect dominates when μ not too low

high μ	B1 and B2 favor coordination
intermediate μ	B1 favors, B2 against, but $B 1>B 2$
low μ	B1 favors, B2 against, but $B 1<B 2$

[^0]: ${ }^{1}$ Paris School of Economics
 ${ }^{2}$ Middlesex, London and IZA, Bonn
 ${ }^{3}$ UCLouvain

